I just read about a website, accidental aRt, that shows how artistic R graphics can look when things go bad. Wonderful!

# R

# Where’s the Magic? (EMD and SSA in R)

When I first heard of SSA (Singular Spectrum Analysis) and the EMD (Empirical Mode Decomposition) I though surely I’ve found a couple of magical methods for decomposing a time series into component parts (trend, various seasonalities, various cycles, noise). And joy of joys, it turns out that each of these methods is implemented in R packages: `Rssa`

and `EMD`

.

In this posting, I’m going to document some of my explorations of the two methods, to hopefully paint a more realistic picture of what the packages and the methods can actually do. (At least in the hands of a non-expert such as myself.)

# Three-month forecasts to monthly estimates

In a previous series of postings, I described a model that I developed to predict monthly electricity usage and expenditure for a condo association. I based my model on the average monthly temperature at a nearby NOAA weather station at Ronald Reagan Airport (DCA), because the results are reasonable and more importantly because I can actually obtain forecasts from NOAA up to a year out.

The small complication is that the NOAA forecasts cover three-month periods rather than single month: JFM (Jan-Feb-Mar), FMA (Feb-Mar-Apr), MAM (Mar-Apr-May), etc. So, in this posting, we’ll briefly describe how to turn a series of these overlapping three-month forecasts into a series of monthly approximations.

# Fun with R and HMM’s

I’m always intrigued by techniques that have cool names: Support Vector Machines, State Space Models, Spectral Clustering, and an old favorite Hidden Markov Models (HMM’s). While going through some of my notes, I stumbled onto a fun experiment with HMM’s where you feed a bunch of English text into a two-state HMM and it will (tend to) discover what letters are vowels.

Continue reading

# Stata for R users pt 1

I did a quick Google search on “Stata for R users” (both as separate words and as a quoted phrase) and there really isn’t much out there. At best, there are a couple of equivalence guides that show you how to do certain tasks in both programs. (Plus a whole lot of “R for (ex-) Stata users” articles.) I’m writing this post, as a long-term R user who recently bought Stata, because I believe that Stata is a good complement to R, and many R users should consider adding it to their toolbox.

I’m going to write this in two parts. Part one will describe why an R user might be interested in Stata — with various Stata examples. Part Two will give specific tips and warnings to R users who do decide to use Stata.

Continue reading

# Electricity Usage in a High-rise Condo Complex pt 6 (discussion of model)

In Part 4 of this series, I created a Bayesian model in Stan. A member of the Stan team, Bob Carpenter, has been so kind as to send me some comments via email, and has given permission to post them on the blog. This is a great opportunity to get some expert insights! I’ll put his comments as block quotes:

That’s a lot of iterations! Does the data fit the model well?

I hadn’t thought about this. Bob noticed in both the call and the summary results that I’d run Stan for 300,000 iterations, and it’s natural to wonder, “Why so many iterations? Was it having trouble converging? Is something wrong?” The `stan`

command defaults to four chains, each with 2,000 iterations, and one of the strengths of `Stan`

‘s HMC algorithm is that the iterations are a bit slower than other methods but it mixes much faster so you don’t need nearly as many iterations. So 300,000 is a bit excessive. It turns out that if I run for 2,000 iterations, it takes 28 seconds on my laptop and mixes well. Most of the 28 seconds is taken up by compiling the model, since I can get 10,000 iterations in about 40 seconds.

So why 300,000 iterations? For the silly reason that I wanted lots of samples to make the CI’s in my plot as smooth as possible. Stan is pretty fast, so it only took a few minutes, but I hadn’t thought of implication of appearing to need that many iterations to converge.

# Electricity Usage in a High-rise Condo Complex pt 5

Last time, we modeled the Association’s electricity expenditure using Bayesian Analysis. Besides the fact that MCMC and Bayesian are sexy and resume-worthy, what have we gained by using `Stan`

? MCMC runs more slowly than alternatives, so it had better be superior in other ways, and in this posting, we’ll look at an example of how. I’d recommend pulling the previous posting up in another browser window or tab, and position the “Inference for Stan model” table so that you can quickly consult it in the following discussion.

If you look closely at the numbers, you may notice that the high season (warmer-high, ratetemp 3, beta[3]) appears to have a lower slope than the mid season (warmer-low, ratetemp 2, beta[2]), as was the case in an earlier model. This seems backwards: the high season should cost more per additional kWh, and thus should have a higher slope. This raises two questions: 1) is the apparent slope difference real, and 2) if it is real, is there some real-world basis for this counter-intuitive result?

Continue reading