Book recommendation: Longitudinal Structural Equation Modeling

Longitudinal Structural Equation Modeling, Todd D. Little, Guilford Press 2013.

Let me start by saying that this is one of the best textbooks I’ve ever read. It was written as if the author was our mentor, and I really get the feeling that he’s sharing his wisdom with us rather than trying to be pedagogically correct. The book is full of insights on how he thinks about building and applying SEMs, and the lessons he’s learned the hard way.

LittleBook
Continue reading

Three-month forecasts to monthly estimates

In a previous series of postings, I described a model that I developed to predict monthly electricity usage and expenditure for a condo association. I based my model on the average monthly temperature at a nearby NOAA weather station at Ronald Reagan Airport (DCA), because the results are reasonable and more importantly because I can actually obtain forecasts from NOAA up to a year out.

The small complication is that the NOAA forecasts cover three-month periods rather than single month: JFM (Jan-Feb-Mar), FMA (Feb-Mar-Apr), MAM (Mar-Apr-May), etc. So, in this posting, we’ll briefly describe how to turn a series of these overlapping three-month forecasts into a series of monthly approximations.

temps3temps1
Continue reading

Fun with R and HMM’s

I’m always intrigued by techniques that have cool names: Support Vector Machines, State Space Models, Spectral Clustering, and an old favorite Hidden Markov Models (HMM’s). While going through some of my notes, I stumbled onto a fun experiment with HMM’s where you feed a bunch of English text into a two-state HMM and it will (tend to) discover what letters are vowels.
bw1
Continue reading

Stata for R users pt 1

I did a quick Google search on “Stata for R users” (both as separate words and as a quoted phrase) and there really isn’t much out there. At best, there are a couple of equivalence guides that show you how to do certain tasks in both programs. (Plus a whole lot of “R for (ex-) Stata users” articles.) I’m writing this post, as a long-term R user who recently bought Stata, because I believe that Stata is a good complement to R, and many R users should consider adding it to their toolbox.

I’m going to write this in two parts. Part one will describe why an R user might be interested in Stata — with various Stata examples. Part Two will give specific tips and warnings to R users who do decide to use Stata.
Stata 13 logo Continue reading

Stata 13 is nice

I’m a big fan of R, and it will be my primary tool for a long time, but I wanted to add another tool to my toolbox and decided on Stata. Stata 13 was just released (June 2013), and I have to say that it’s a very nice package.

Why would anyone pick Stata over R? R has many advantages, but here are some reasons that you might pick Stata:
Continue reading