Real Data Science pt1: Review of Numbersense

So far, when I’ve written on Data Science topics I’ve written about the fun part: the statistical analysis, graphs, conclusions, insights, etc. For this next series of postings, I’m going to concentrate more on what we can call Real Data Science®: the less glamorous side of the job, where you have to beat your data and software into submission, where you don’t have access to the tools or data you need, and so on. In other words, where you spend the vast majority of your time as a Data Scientist.

I’ll start the series with a review of Kaiser Fung’s Numbersense, published in 2013. It’s not mainly about Real Data Science, but I’ll start with it because it’s a great book that illustrate several common data pitfalls, and in the epilogue Kaiser shares one of his own Real Data Science stories and I found myself nodding my head and saying, “Yup, that’s how I spent several days in the last couple of weeks!”

Continue reading

Book recommendation: Longitudinal Structural Equation Modeling

Longitudinal Structural Equation Modeling, Todd D. Little, Guilford Press 2013.

Let me start by saying that this is one of the best textbooks I’ve ever read. It was written as if the author was our mentor, and I really get the feeling that he’s sharing his wisdom with us rather than trying to be pedagogically correct. The book is full of insights on how he thinks about building and applying SEMs, and the lessons he’s learned the hard way.

Continue reading